
The Role of Ontologies in Schema-based Program
Synthesis

Tom& Bure5
Charles University, Prague
bures@nenya.ms.mfE.cuni.cz

Ewen Denney
QSS, NASA Ames Research Center

edenneyQemai1. arc-nasa. gov

Bernd Fischer
RUCS, NASA Ames Research Center

fisch@email. arc-nasa. gov

Eugen C. Nistor
University of California, Irvine

enistor@ics.uci. edu

1 Introduction
Progntm synthesis is the process of automatically deriving executable code from
(non-executable) high-level specifications. It is more flexible and powerful than
conventional code generation techniques that simply translate algorithmic speci-
fications into lower-level code or only create code skeletons from structural spec-
ifications (such as UML class diagrams). Key to building a successful synthesis
system is specializing to an appropriate application domain. The AUTOBAYES
[2] and AUTOFILTER [5] systems, under development at NASA Ames, operate
in the two domains of data analysis and state estimation, respectively.

The central concept of both systems is the schema, a representation of
reusable computational knowledge. This can take various forms, including high-
level algorithm templates, code optimizations, datatype refinements, or archi-
tectural information. A schema also contains applicability conditions that are
used to determine when it can be applied safely. These conditions can refer to
the initial specscation, to intermediate results, or to elements of the partially -
instantiated code. Schema-based synthesis uses AI technology to recursively
apply schemas to gradually refine a specification into executable code. This
process proceeds in two main phases. A front-end gradually transforms the
problem specification into a program represented in an abstract intermediate

1

code. A ‘backend then compiles this further down into a concrete target pro-
gramming language of choice. A core engine applies schemas on the initial
problem specification, then uses the output of those schemas as the input for
other schemas, until the full implementation is generated. Since there might be
different schemas that implement Merent solutions to the same problem this
process ciyl generate an entire solution tree.

AUTOBAYES and AUTOFILTER have reached the level of maturity where
they enable users to solve interesting application problems, e.g., the analysis
of Hubble Space Telescope images. They are large (in total around 100lhC
Prolog), knowledgeintensive systems that employ complex symbolic reasoning
to generate a wide range of non-trivial programs for complex application do-
mains. Their schemas can have complex interactions, which make it hard to
change them in isolation or even understand what an existing schema actually
does. Adding more capabilities by increasing the number of schemas will only
worsen this situation, ultimately leading to the “entropy death” of the synthesis
system.

The root came of this problem is that the domain knowledge is scattered
throughout the entire system and only represented implicitly in the schema im-
plementations. In our current work, we are addressing this problem by making
explicit the howledge from Merent parts of the synthesis system. Here; we
discuss how Gruber’s definition of an ontology as ‘‘an explicit specification of
a conceptualization” [4] matches our efforts in identifymg and explicating the
domain-specific concepts. We outline the dual role ontologies play in schema-
based synthesis and argue that they address different audiences and serve differ-
ent purposes. Their first role is descriptive: they serve as explicit documenta-
tion, and help to understand the internal structure of the system. Their second
role is prescriptive: they provide the formal basis against which the other parts
of the system (e.g., schemas) can be checked. Their final role is referential: on-
tologies also provide semantically meaningful ^hooks” which allow schemas and
tools to access the internal state of the program derivation process (e.g., frag-
ments of the generated code) in domain-specific rather than language-specific
terms, and thus to modify it in a controlled fashion.

For discussion purposes we use AUTOLINEAR, a small synthesis system we
are currently experimenting with, which can generate code for solving a system
of linear equations, Az = b.

2 Sources of knowledge and concepts
Program synthesis systems are knowledge-rich and work with concepts from

I_ - 1 .. -- - 2 ‘ j wide range of different sources. Each of the sources introduces concepts on
a different level of abstraction. However, as the synthesis process is in fact
a gradual refinement (although not necessarily in the technical sense of the
word), concepts from the different sources are often related (e.g. matrices as
mathematical concept, as elements of problem specifications, as datatypes in an
intermediate language, and as two-dimensional arrays in a target language). We

2

. -

use ontologies to formally declare and then categorize these diverse concepts,
and link related concepts together.

Generative programming [l] distinguishes between the appZication space and
the solution space as the two sources of concepts. We will keep this as a top-level
categorization, but argue that we need a more rehed distinction. In the rest
of this section we identlfy the different concept sources and the major concepts
for each of these sources.

2.1 Application space
Intuitively, the application space contains d concepts that are required to de-
scribe the application problem. For AUTOLINEAR, this includes data types like
vector and matrix, operations like matrix element selection and matrix addi-
tion, and predicates like is-diagonal and isinvertible. These concepts have to
be defined by application domain experts. Since they constitute the common
vocabulary of discourse for the different parts of the system and for the user, the
format must be understandable by the different participants. For example, we
aim to explicitly link the domain concepts to representations from the specifica-
tion language, to intermediate language constructs and to target programming
language constructs. In this way, the h a l program can be documented with
meaningid annotations.

However, not all concepts are equal. While some concepts are available
to the users of the synthesis system to formulate their problem specifications
(e.g., matrix), others are only used by the system developers to implement the
schemas (e.g., diagonal). In general, we thus refine the application space into
the

problem specification domain i.e., concepts that are used to formulate the
high-level problem specifications, and the

background theory domain i.e., concepts that are not expressible in prob-
lem specifications but are required to formulate semaulic constraints such
as the correctness of specifications or schema applicability conditions.

It is important to note that the problem specification domain is not the speci-
fication language itself but rather defines its abstract syntax. The different d e
main concepts such as vector and matrix can have different associated syntaxes
("syntactic sugar") in different specification languages. For example, AUTO-
LINEAR uses a Matlab-like notation for specifying matrix literals, but this could
be changed easily by adapting a new parser for the specification language.

2.2 Solution space
Intuitively, the solution space contains all concepts that are required to formu-
late the generated programs. However, since the semantic gap between speciiica-
tions and generated programs is large (i.e., specifications are much more concise

3

.

than programs), the solution space is not a simple dud of the application space
but provides a much wider variety of concepts.

L i e the application space, the solution space is refined into several domains:

intermediate language domain i.e., elements of the intermediate language
or languages,

target language domain Le., elements of the target language and environ-
ment,

algorithm domain i.e., the Werent algorithms and sub-algorithms that are
implemented as schemas,

search control domain Le., concepts that are not expressible in the language
domains but that are used to control the search for applicable schemas,
and

meta-programming kernel i.e.; concepts expressing operations on objects
defined in any of the other domains that can be used to implement schemas.

AUTOLINEAR’S intermediate language contains the usual procedural program-
ming constructs (e.g., variable declaration, for-loop, if-then-else branch, function
definitions) and basic data types (e.g., int, double, bool). In addition, it also
contains higher-level programming constructs (e.g., finite summations and con-
vergence loops) and data types and operations representing application domain
concepts (e.g., matrix and matrix operations). However, the intermediate lan-
guage domain also contains concepts reflecting programming language semantics
(e.g., lvalue and scope) which are used to d e h e and enforce the wellformedness
of the generated code fragments. AUTOLINEAR uses Herent versions of the in-
termediate language at Herent stages of the refinement process. Each version
is more restricted in its use of the higher-level concepts. The final stage of this
produces executable code for the chosen target. This is an actual programming
language (i.e., C or C++) toghether with a suitable implementation of the rel-
evant application domain concepts (e.g., matrix), either using target libraries
(e.g., the Matrix-class i7om the Octave library) or using concepts available in
the language (e.g., two-dimensional array). Note that the distinction between
the intermediate language used in the front-end and the target language used in
the backend is a consequence of our design. In principle, both language domains
could be integrated.

3 Benefits of Ontologies
_ L * - , -. ^^ . -_

We are currentb reengineer& our system so tdattge concepti-it manipulatei- .
are grounded with respect to explicit ontologies. The idea is that the synthesis
system will manipulate a sequence of models (input model, intermediate models,
platform-independent model, platform specific model, and so on), where each
model is built &om concepts from a given ontology. We believe that the use of
ontologies will bring numerous benefits:

4

1. The ontology acts as documentatzon for programmers. A large part of the
diilicdty in understanding a schema is determining the input requirements
and what structures are expected for output. Schema inputs =e often very
complex and usually contain mtermediate results fiom previous schemas,
as well as parts of the original problem specification, and must comply
with the specification of the target language and the target architecture.

2. It makes m t z n g schemas w e e r . Using a formally defined ontology, we can
automatically generate models and an API for model manipulation which
can then be used in the schema code, so that programmers do not have to
deal with the internal representation of models. The A P I has constructors
for concepts and getter/setter methods for concept attributes. It also lets
schemas access higher-lever predicates built on ontological reasoning (e-g.
a m a t w 2s square, a mat% zs sparse).

3. It controls schema znteractzon. Schemas produce partially instantiated
code. In a sense, they can be regarded as constructing code families. Thus,
for schemas to interact consistently they need to agree on the properties
of these families, and this is achieved by using an ontology.

4. It faczlztates extenszons. By making explicit which domain concepts are
used in the various languages, the system can more easily be ported to
new domains, possibly reusing some parts of the ontology.

5. It allows '11s to valadate the output of a schema. If the ontology is for-
mally defined, the system can automatically check whether the output of
a schema is well-structured and whether any additional constraints which
may be required hold.

6. It ensures wnssstency throughout the syntheszs process. Schemas can be
seen as gradually refining abstract concepts from the specification do-
main into a concrete implementation !e.g., matrzx). Although we do not
formally define schemas as refinements, linking abstract and concrete con-
cepts to a common concept in the ontology can ensure consistency.

7. It enables generatzon of addztzonal knowledge-baed artzfacts. Schemas can
be augmented with ontological information. This allows the possibility of
generating informative artifacts relating to the derivation process, such as
documentation explaining how the code has been derived. This can be
recorded either as in-line comments, or as a separate document. Besides
mark-up intended for humans, we can also generate logical annotations
which can be used for automated verification of the code.

-.There are several possible languages which can be used to represent the
ontologies and we are currently evaluating OWL, KIF', and UML, with respect
to two main criteria:

Expressiveness The language should be able to express complicated con-
straints (e.g. type-checking) and support higher-level concepts (e.g. square
matrix, sparse matrix).

- -

5

Tool support Tools should integrate easily with the synthesis environment
and be able to verify that models produced by schemas comply with a
given ontolo=. Code generation is an advantage. Editing and viewing
&pabilities are especially valuable for complex ontologies.

Ontologies can be used to classify schemas and enrich the core engine so
that it has greater control over the derivation process. The extra knowledge
also should also allow us to systematize the documentation generation and au-
tomated certification capabilities of the synthesis system.

References
[l] K. Czarnecki and U. W. Eisenecker, “Generative Programming: Methods,

Tools, and Applications”, Addison-Wesley, 2002.

[2] B. Fischer and J. Schumann, “AutoBayes: A system for generating data
analysis programs &om statistical models”, J. Functional Programming,
13(3):483-508, May 2003.

[3] M. R Genesereth and R E. Fikes, %owledge Interchange Format, Ver-
sion 3.0, Reference Manual”, Jun 1992

[4] T. R Gruber, “Toward Principles for -the Design of Ontologies. Used for
Knowledge Sharing”, Proceedings of International Workshop on Formal
Ontology, Padova, Italy, Mar 1993.

[5] J. Whittle and J. Schuma.nn, “Automating the implementation of Kalman-
a t e r dgorithms”, 2004, In review.

6

